Maximum Weighted Induced Bipartite Subgraphs and Acyclic Subgraphs of Planar Cubic Graphs
نویسندگان
چکیده
We study the node-deletion problem consisting of finding a maximum weighted induced bipartite subgraph of a planar graph with maximum degree three. We show that this is polynomially solvable. It was shown in [4] that it is NP-complete if the maximum degree is four. We also extend these ideas to the problem of balancing signed graphs. We also consider maximum weighted induced acyclic subgraphs of planar directed graphs. If the maximum degree is three, it is easily shown that this is polynomially solvable. We show that for planar graphs with maximum degree four it is NP-complete.
منابع مشابه
The distinguishing chromatic number of bipartite graphs of girth at least six
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling with $d$ labels that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...
متن کاملComputing Maximum Unavoidable Subgraphs Using SAT Solvers
Unavoidable subgraphs have been widely studied in the context of Ramsey Theory. The research in this area focuses on highly structured graphs such as cliques, cycles, paths, stars, trees, and wheels. We propose to study maximum unavoidable subgraphs measuring the size in the number of edges. We computed maximum unavoidable subgraphs for graphs up to order nine via SAT solving and observed that ...
متن کاملPartitioning the vertex set of a bipartite graph into complete bipartite subgraphs
Given a graph and a positive integer k, the biclique vertex-partition problem asks whether the vertex set of the graph can be partitioned into at most k bicliques (connected complete bipartite subgraphs). It is known that this problem is NP-complete for bipartite graphs. In this paper we investigate the computational complexity of this problem in special subclasses of bipartite graphs. We prove...
متن کاملLinear-Time Algorithms for Maximum-Weight Induced Matchings and Minimum Chain Covers in Convex Bipartite Graphs
A bipartite graph G = (U, V,E) is convex if the vertices in V can be linearly ordered such that for each vertex u ∈ U , the neighbors of u are consecutive in the ordering of V . An induced matching H of G is a matching such that no edge of E connects endpoints of two different edges of H. We show that in a convex bipartite graph with n vertices and m weighted edges, an induced matching of maxim...
متن کاملAcyclic and Frugal Colourings of Graphs
Given a graph G = (V,E), a proper vertex colouring of V is t-frugal if no colour appears more than t times in any neighbourhood and is acyclic if each of the bipartite graphs consisting of the edges between any two colour classes is acyclic. For graphs of bounded maximum degree, Hind, Molloy and Reed [14] studied proper t-frugal colourings and Yuster [19] studied acyclic proper 2-frugal colouri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 30 شماره
صفحات -
تاریخ انتشار 2014